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Abstract—Reliability analysis of Multi-State System is one of 
fields, where the methods of the multiple-valued logic are 
used efficiently. Multi-State System is a mathematical model 
in reliability engineering, which allows considering some 
performance level in the system reliability behavior. The 
principal problem in the reliability engineering is 
identification of the system components that have the most 
influence on the system reliability. One of possible 
approaches, which can be used for this task, is to identify 
minimal cut sets (or minimal cut vectors (MCVs)). MCVs 
represent situations in which the repair of any damaged 
component causes the system improvement. In this paper, 
the new theoretical background for identification of MCVs is 
considered. The presented method is based on logical 
differential calculus. 

Keywords-reliability; structure function; minimal cut 
vector; logical differential calculus 

I.  INTRODUCTION 
Reliability is one of the basic characteristics of many 

systems. There are a lot of methods for estimation of 
different aspects of the system reliability. Many of these 
methods are indicated as Minimal Cut Set (MCS) methods 
[1-4]. A MCS is a minimum set of system components 
where the fault condition for all components in the set 
results system outage. The MCS method is useful in 
evaluation of the reliability of series-parallel systems or 
small systems. In papers [3, 5-7] several methods for 
computation of MCSs have been proposed. For large 
systems, it is quite difficult and time consuming to identify 
MCS components by inspection. The principal difficulty of 
these methods is application for reliability analysis of 
complex systems, which contain a lot of components or 
components that are very different in their nature, e.g. 
hardware, software and human factor, which implies that 
those system contains different types of connections and 
not only series or parallel. Those reliability studies are 
generally off-line studies, but because of the combinatorial 
nature of the calculation, the calculation time is 
nonetheless an issue. Thus, it is important to find a better 
method to determine MCSs for large and complex 
systems. 

The MCS method is used in evaluation of the system 
reliability and availability, which are computed based on 
the failure probability of each component of the set [1, 3]. 
Another application of the MCS method is importance 
analysis, which aim is to identify influence of individual 
components on the system reliability. Importance 
Measures (IMs) are used for quantification of this 
influence. One of the most commonly used IMs is the 
Fussell-Vesely IM [8-10] that is defined based on MCSs. 

There exist some mathematical backgrounds for the 
calculation of MCSs. One of them is based on the fault 
trees [5, 6, 11, 12] and another uses graph theory to find 
MCSs in different types of network systems [3, 4, 7]. 

The principal point in the development of the methods 
and algorithms for the calculation of MCSs is a 
mathematical model and interpretation of a system. There 
are two types of mathematical models in reliability 
analysis [13, 14]: Binary-State System (BSS) and Multi-
State System (MSS). Only two states are possible for a 
BSS: system components and system can be in one of two 
states that are working and failure. These two states are 
represented by two numbers – 1 (functioning) and 0 
(failure). MSS permits to consider more than two states in 
system/components performance, for example: failed, 
partially functional, fully operational, etc. These states are 
represented by numbers from 0 (failure) to m -1 (fully 
operational). The reliability of these systems is computed 
with regard to the system performance. The correlation 
between states of components and the system performance 
level is defined by the structure function [13, 15]: 

 φ(x): {0, 1,…, m -1}n→{0, 1,…, m -1}, (1) 

where n is a number of system components, m is a number 
of states of every component and the system, and 
x = (x1, x2,…, xn) is a vector of components states (state 
vector). For m = 2, definition (1) is a definition of the 
structure function of a BSS. 

The MSS reliability and unreliability based on the 
conception of the structure function (1) are defined as [13]: 

 R(j) = Pr{φ(x) � j}, j = 1,2,…, m -1, (2) 

 U = Pr{φ(x) = 0}. (3) 

There is another definition of the MSS unreliability by 
MCSs [13]: 
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where t is a number of MCSs for system state 1 and MCSv 
is the v-th MCS for system state 1. 

In this paper, we consider approach (2) for estimation 
of the MSS reliability. In this case, the probability of the 
system component state is used and defined as: 

 pi,s = Pr{xi = s}, s = 0,1,…, m -1. (5) 
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We propose new algorithm for calculation of MCSs for 
a MSS based on the structure function (1). The structure 
function definition (1) corresponds with the formal 
definition of the Multiple-Valued Logic (MVL) function. 
This fact allows using some methods and techniques of the 
MVL for reliability analysis of MSSs. One of those 
methods is logical differential calculus. The application of 
logical differential calculus in MSS reliability analysis has 
been introduced in papers [16, 17]. In those papers authors 
proposed a new method for calculation of IMs based on 
the Direct Partial Logic Derivatives (DPLD). In this 
paper, another application of this mathematical tool is 
considered: the definition and computation of MCSs of a 
coherent MSS, which meets the following assumptions 
[13, 14]: 

(a) every component is relevant to the system performance,  

(b) the system structure function (1) is non-decreasing, i.e. 
degradation of any system component cannot cause 
improvement of system performance level. 

There are different methods for the reliability 
estimation of a coherent MSS. Most of these methods are 
based on the investigation of boundary states of the 
system, which represent situations in which the change of 
one system component state causes the transformation of 
the system performance level. A MCS is one type of 
boundary states. Therefore, the calculation of MCSs is a 
principal problem in reliability analysis. A new algorithm 
for computation of MCSs is proposed in this paper. 

II. MINIMAL CUT VECTORS 

A. Minimal Cut Set and Minimal Cut Vector of Binary-
State System 
MCS methods have been proposed for BSS reliability 

analysis in the first. The quantification of the BSS 
reliability based on the conception of MCS has been 
considered and used in many papers [1-7]. 

According to [1] a cut set is defined as a set of 
components of a system whose simultaneous failure leads 
into the failure of the system (if the system has been 
operational). A cut set is minimal, if no component can be 
removed from it without losing its status as a cut set. 

In the terms of the structure function, a (minimal) cut 
set can be interpreted by a special state vector, which is 
known as a (Minimal) Cut Vector (MCV). According to 
the definition of cut set, the system state for a state vector 
covered by a cut set is zero. Therefore state vector x is a 
cut vector if φ(x) = 0. 

So, if all components of a cut set are failed and 
components out of the cut set are functioning then the 
system is failed. A state vector, which coincides with a 
MCS, is known as a MCV. Using the convention that 
y > x, where x and y are two states vector, for which yi � xi 
(for i = 1,2,…,n) and there exists at least one i such that 
yi > xi, we say that a cut vector x is minimal if φ(y) = 1 for 
any y > x. 

There is one-to-one correspondence between MCSs 
and MCVs. However, the terms MCS and MCV are 
slightly different. A MCS is a minimal set of components, 
whose simultaneous failure causes the system failure, 
while MCV represents situation in which the repair of any 

failed component results into the repair of the whole 
system. 

B. Minimal Cut Set and Minimal Cut Vector of Multi-
State System 
The definition of MCS has been generalized for MSSs 

in paper [18]. The development of this conception for 
MCVs of a MSS has been proposed in [13, 19, 20]. In 
papers [21-23], there have been developed and analyzed 
some algorithms that can be used to find all MCVs of a 
network system, which is modelled as a MSS. However, 
those algorithms assume that cut sets of source-sink cuts 
(in the sense of graph theory) of a network are known and 
therefore they cannot be used to find MCVs in other types 
of systems. 

The generalization of MCV definition for a MSS takes 
into account that components of a MSS have more than 
two states. This extension is based on the assumption that 
MCV is defined for every relevant system state, i.e. for 
states {1, 2,…, m -1}. The definition of a MCV of a MSS 
has been proposed in [13, 19] as follows: a state vector x is 
a cut vector for demand state j of the system if φ(x) < j. A 
cut vector x is minimal if φ(y) � j for any y > x. 

The meaning of MCVs for a MSS is similar as in the 
case of a BSS, i.e. MCVs for system state j identify those 
situations in which the repair of any damaged component 
causes the improvement of the system at least to state j. 

III. LOGICAL DIFFERENTIAL CALCULUS 
Logical differential calculus is a special tool, which is 

used for analyzing of dynamic properties of MVL 
functions. In papers [16, 17], applications of logical 
differential calculus in reliability analysis have been 
introduced. Those applications are based on DPLDs. 

There exist several types of logic derivatives in MVL. 
One of them is a Direct Partial Logic Derivative (DPLD). 
A DPLD can be used for the analysis of the dynamic 
properties of a MVL function or a MSS structure function, 
in the case of reliability analysis. These derivatives reflect 
the change in the value of the underlying function when 
the value of given variable changes [16, 24]. DPLD 

)~()~( ssxll i →∂→∂φ of a MVL function φ(x) of n 
variables with respect to variable xi reflects the fact of 
changing of the function from l to l~  when the value of 
variable xi changes from s to s~  [24]. In terms of reliability 
analysis, a DPLD with respect to variable xi for the MSS 
structure function (1) permits to analyze the system 
performance level change from value l to l~  when the i-th 
component state changes from s to s~  [16]. 

A DPLD for the MSS structure function has some 
specific properties for a coherent MSS. According to the 
assumption (b), a DPLD of the structure function is 
nonzero if l > l~  and s > s~  or l < l~  and s < s~ . The 
condition l > l~  and s > s~  allows analyzing the system 
degradation and failure, and the condition l < l~  and s < s~  
is used to investigate the system performance level 
improving. Assumptions (a) and (b) cause gradual changes 
of the function value and the same variable. Below, we 
consider only the improving of the system performance 
level, because the mathematical backgrounds of the 
evaluation of the system performance level degradation 
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and improvement are similar. Therefore, a DPLD for 
analysis of a coherent MSS is defined for the system 
improvement as [16]: 
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where φ(si, x) = φ(x1,…,xi-1, s, xi+1,…,xn); s ∈ {0,…, m -2}; 
l, l~ ∈{0,…, m -1} and l < l~ . 

DPLD (6) allows discovering boundary system states 
for which the change of component i state from s to s + 1 
causes the change of MSS performance level from l to l~ . 

IV. MINIMAL CUT VECTORS AND LOGICAL 
DIFFERENTIAL CALCULUS 

A MCV corresponds to system components states for 
which an improving of one of component state causes the 
improvement of the system performance level. Consider a 
MCV from the point of view of a DPLD with respect to 
the i-th variable. Let state vector x be a MCV for system 
state j. It means that the value of the structure function for 
it is l, l < j. Let ))1(,,,,,,)1((

11 nrr mccm
k

−−= ���x , 
where k is a number of components which are in state less 
than m -1 and  rq (for q = 1, 2,…, k) is the index of the q-th 
component, which state is less than m -1, and 

qr
c is a state 

of component rq.  According to the definition of a MCV of 
a MSS, the change of any component rq from 

qr
c  to 1+

qr
c  

causes the improvement of the structure function value 
from l to ql

~ , where ql
~ � j. Therefore, DPLDs 

)1()~( +→∂→∂
qqq rrr ccxllφ in regard to variable ,

qr
x for 

q = 1, 2,…, k, have the nonzero value for the considered 
state vector (Fig. 1). This derivative is calculated according 
to (6). According to the definition of a MCV, every system 
component state change causes the system performance 
level improving, therefore every DPLD with respect to 
variable ,

qr
x  for q = 1, 2,…, k, has the nonzero value for 

the state vector that agrees with the MCV. 

 
Figure 1.  Minimal Cut Vector and Direct Partial Logical Derivatives of 

the structure function. 

The union of all DPLDs )1()~( +→∂→∂
qqq rrr ccxllφ  

that meet the property l < j and l~  � j has to be computed 
to identify all situations in which the improvement of the 
fixed component state results the transition of the system 
from state less than j to state greater than or equal to j: 
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for s = 0, 1,…, m -2 and j = 1, 2,…, m -1. 
DPLD union (7) can be defined by the next equation 

too: 
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for s = 0, 1,…, m -2 and j = 1, 2,…, m -1. 
DPLD (6) and union (7), (8) of DPLDs can be 

calculated for state vectors ),,,,,,( 111 nii xxsxx �� +−=x . 
For state vectors ),,,,,,( 111 nii xxaxx �� +−=x , in which 
a � s, DPLD (6) and union (7), (8) do not exist. Therefore 
the dimension of a DPLD with respect to state s of variable 
xi is mn -1. It implies that DPLDs union (7), (8) for the i-th 
variable has dimension mn -1 too. But the calculation of the 
MCVs supposes analysis of the all possible system states. 
Therefore DPLDs union (7), (8) has to be transformed into 
the extended union, in which the non-existing values of 
DPLDs union are designated by special symbol “*” 
(Fig. 2). The dimension of the extended union is mn  and it 
can be defined as follows: 
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Figure 2.  Direct Partial Logic Derivative of the structure function φ(x) 

with respect to variable xi. 

The merge (union) of unions (9) of DPLDs has to be 
computed to identify all situations in which any minor 
improvement of a given component causes the transition of 
the system from state less than j to state greater than or 
equal to j: 
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Using definition (9) of the extended union, the merge (10) 
can also be expressed in the following manner: 
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The merge (10), (11) of extended unions (9) of DPLDs 
has to be computed for all components of the system and 
then their “intersection” has to be computed to identify 
MCVs for system state j. The intersection of two merges 
(10), (11) of two different variables (components) is 
defined in Table I. This intersection identifies state vectors 
in which the change of states of both components (if 
component state can be changed) results in the change of 
the system state from value less than j to value greater than 
or equal to j. In Table I, symbol “1” means that at least 
state of one component of components i1 and i2 can be 
changed and all those changes result in the required change 
of the system state (from state less than j to state greater 
than or equal to j). Symbol “0” identifies those state 
vectors in which at least one component change does not 
cause the required change of the system state. Finally, 
symbol “*” correlates with those situations, when neither 
component i1 nor component i2 can be changed from state s 
to state s +1, because both components are in state m -1. 

TABLE I.  THE INTERSECTION OF TWO MERGES OF UNIONS OF 
DPLDS 
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* * 0 1 
0 0 0 0 
1 1 0 1 

 
The intersection of two merges of extended unions of 

DPLDs identifies state vectors in which the improvement 
of both components (if component can be repaired, i.e. if 
component is not in state m -1) results in the improvement 
of the system from state less than j to state greater than or 
equal to j. So, the intersection of all merges of extended 
unions of DPLDs identifies state vectors in which 
improvement of any component (if component can be 
repaired) results in the required repair of the system, and 
this correlates with the definition of a MCV. 

V. ALGORITHM FOR COMPUTATION OF MINIMAL CUT 
VECTORS 

According to correlations between MCVs and DPLDs, 
which have been formulated in the previous part, an 
algorithm for calculation of MCVs for state j of a MSS of 
n components can be defined. This algorithm has next 
steps: 

1. For every component, i.e. for i = 1, 2,…, n, and for 
relevant component states, i.e. for s = 0, 1,…, m -2,  
compute all DPLDs )1()~( +→∂→∂ ssxll iφ for 
l < j � l~ . 

2. Using DPLDs from step 1, compute the extended 
unions )1()( +→∂↑↑∂ ssxj iφ  for i = 1, 2,…, n 
and s = 0, 1,…, m -2. 

3. Calculate the merge ixj ∂↑↑∂ )(φ of extended 
unions for i = 1, 2,…, n, i.e. for every system 
component. 

4. Compute the intersection of all merges 
ixj ∂↑↑∂ )(φ of extended unions according to 

Table I. 
5. Define MCVs for state j that agree to the value 1 in 

the intersection, calculated in the previous step. 
Steps 1 – 3 in the algorithm can be replaced by only 

one step that is based on (11), which defines simple 
scheme for computation of merge of extended unions. 
Therefore, we get the following simple algorithm for 
calculation of MCVs for state j of a MSS: 

1. According to (11), for every system component, i.e. 
for i = 1, 2,…, n, find the merge ixj ∂↑↑∂ )(φ of 
extended unions. 

2. Compute the intersection of all merges 
ixj ∂↑↑∂ )(φ of extended unions according to 

Table I. 
3. Define MCVs for state j that agrees to the value 1 

in the intersection, calculated in the previous step. 

VI. EXAMPLE 
Consider the system that is investigated in paper [25]. 

It is a simple power grid, which consist of three generation 
plants – coal (component 1), hydro (component 2) and 
wind (component 3) plants. This system has three 
performance levels: 0 – non-operational, 1 – partially 
operational, 2 – fully operational. The structure function of 
this system is defined in Table II. 

TABLE II.  THE STRUCTURE FUNCTION OF THE SIMPLE POWER 
GRID 

  x3  

x1 x2 0 1 2 

0 
0 
0 
1 
1 
1 
2 
2 
2 

0 
1 
2 
0 
1 
2 
0 
1 
2 

0 
0 
1 
0 
1 
2 
0 
2 
2 

0 
1 
1 
0 
1 
2 
0 
2 
2 

0 
1 
1 
0 
1 
2 
0 
2 
2 

 
Consider as example the calculation of MCVs for the 

performance level 1 of this system by the approach based 
on DPLDs above mentioned. 

According to the mathematical definition (8) of this 
approach, two DPLDs ∂φ(0 → 1)/∂x i(s → s +1) and 
∂φ(0 → 2)/∂x i(s → s +1), for i = 1, 2, 3 and s = 0, 1, have 
to be computed. These derivatives are combined into the 
extended union ∂φ(�1�)/∂x i(s → s +1), for s = 0, 1, based 
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on the rule (9). These extended unions for the first variable 
are presented in Table III. 

The merge (10) of two extended unions of component 
1 is presented in Table III too. The merge ∂φ(�1�)/∂x1  
identifies states vector for which any minor improvement 
of the 1-th component causes the transition of the system 
from state 0 to states 1 or 2. The intersection of merges 
(10) detects state vectors for which any minor 
improvement of any component causes the transition of the 
system from state 0 to states 1 or 2, i.e. this intersection 
finds state vectors, which are MCVs for system state 1. 
The merge of extended unions for every component of the 
power grid system and their intersection are calculated in 
Table IV. From this table, we can see that there are 2 
MCVs for state 1 of the studied system, i.e. (0,1,0) and 
(2,0,2). These MCVs represents boundary states for system 
unreliability and therefore they can be used to calculate 
system unreliability (4): 

 
)}.2,0,2(OR)0,1,0(Pr{

}1)(Pr{}0)(Pr{
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xx
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TABLE III.  EXTENDED UNIONS OF DPLDS AND THEIR MERGE 

x1  x2  x3 φ(x) )10(
)1(

1 →∂
↑↑∂

x
φ  

)21(
)1(

1 →∂
↑↑∂

x
φ  

1

)1(
x∂

↑↑∂φ  

0   0   0 
0   0   1 
0   0   2 
0   1   0 
0   1   1 
0   1   2 
0   2   0 
0   2   1 
0   2   2 
1   0   0 
1   0   1 
1   0   2 
1   1   0 
1   1   1 
1   1   2 
1   2   0 
1   2   1 
1   2   2 
2   0   0 
2   0   1 
2   0   2 
2   1   0 
2   1   1 
2   1   2 
2   2   0 
2   2   1 
2   2   2 

0 
0 
0 
0 
1 
1 
1 
1 
1 
0 
0 
0 
1 
1 
1 
2 
2 
2 
0 
0 
0 
2 
2 
2 
2 
2 
2 

0 
0 
0 
1 
0 
0 
0 
0 
0 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
0 
0 
0 
0 
0 
0 
0 
0 
0 
* 
* 
* 
* 
* 
* 
* 
* 
* 

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
* 
* 
* 
* 
* 
* 
* 
* 
* 

VII. CONCLUSION 
MCSs and MCVs are the basic for qualitative analyses 

of systems because they represent minimal scenarios of the 
system performance level change. Therefore, the 
development of algorithms for computation of MCVs is an 
important problem in reliability engineering. In this paper, 
theoretical background for new algorithm, which can be 
used to solve this problem, is considered. This 
mathematical background is based on the correlation 
between MCVs and DPLDs. We have shown that MCVs 
can be derived from DPLDs. This fact has allowed us to 
proposed simple algorithm for computation of MCVs of a 

MSS which computational complexity does not depend on 
the number of MCVs and can be used for analysis of any 
coherent MSS. 

TABLE IV.  MERGE OF UNIONS OF DPLDS AND THEIR 
INTERSECTION 

x1  x2  x3 φ(x)
1

)1(
x∂

↑↑∂φ
2

)1(
x∂

↑↑∂φ  

3

)1(
x∂

↑↑∂φ  The 
intersection 
of ∂φ(�1�)/∂xi 

0   0   0 
0   0   1 
0   0   2 
0   1   0 
0   1   1 
0   1   2 
0   2   0 
0   2   1 
0   2   2 
1   0   0 
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